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ABSTRACT

Many modern database-backed web applications are built upon
Object Relational Mapping (ORM) frameworks. While such frame-
works ease application development by abstracting persistent data
as objects, such convenience comes with a performance cost. In
this paper, we studied 27 real-world open-source applications built
on top of the popular Ruby on Rails ORM framework, with the goal
to understand the database-related performance inefficiencies in
these applications. We discovered a number of inefficiencies rang-
ing from physical design issues to how queries are expressed in the
application code. We applied static program analysis to identify and
measure how prevalent these issues are, then suggested techniques
to alleviate these issues and measured the potential performance
gain as a result. These techniques significantly reduce database
query time (up to 91%) and the webpage response time (up to 98%).
Our study provides guidance to the design of future database en-
gines and ORM frameworks to support database application that
are performant yet without sacrificing programmability.

1 INTRODUCTION

Object-relational mapping (ORM) frameworks are widely used to
construct applications that interact with database management sys-
tems (DBMSs). While the implementations of such frameworks vary
(e.g., Ruby on Rails [15], Django [5], and Hibernate [10]), the design
principles and goals remain the same: rather than embedding SQL
queries into the application code, ORMs let developers manipulate
persistent data as if it is in-memory objects via APIs exposed by the
ORMs [1, 6]. When executed, such API calls are translated by the
ORM into queries executed by the DBMS and the query results are
serialized into objects returned to the application. By raising the
level of abstraction, this approach allows developers to implement
their entire application in a single programming language, thereby
enhancing code readability and maintainability.

However, the increase in programming productivity comes at
a cost. With the details of query processing hidden, programmers
often do not understand how their code is translated to queries and
how queries are executed. Furthermore, lacking an understanding
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of application semantics makes it difficult for the ORM and DBMS
to optimize how to manipulate persistent application data. Both
aspects make applications built atop ORMs vulnerable to perfor-
mance problems that impact overall user experience, as we have
observed from the issue reports for such ORM applications [9].

To understand the causes of performance issues in ORM ap-
plications, we studied 27 real-world applications built using the
popular Ruby on Rails framework. The applications are all under
active development and are chosen to cover a wide variety of do-
mains: online forums, e-commerce, collaboration platforms, etc.
Our goal is to understand database-related inefficiencies in these
applications and their causes. To the best of our knowledge, this is
the first comprehensive study of database-related inefficiencies in
database-backed applications built using ORM frameworks.

In our study, we found a number of issues across these applica-
tions that cause performance problems, ranging from how data is
stored in the DBMS to how queries are expressed in the application
code. Most of these issues have not been reported in prior work. Fur-
thermore, we implemented a number of static program analysis to
systematically quantify how common the issues that we identified
are across different applications. We proposed a number of possible
optimizations to resolve these issues that require no or little effort
from developers. As case studies, we applied these optimizations
manually to some of these applications and our evaluation showed
that these optimizations improved performance by up to 41x.

In summary, this paper makes the following contributions:

o We performed the first comprehensive database-performance
study of real-world applications built upon ORM frameworks. We
chose 27 applications, covering a wide variety of domains. Our
results show that many applications share similar performance
inefficiencies, including poor physical database design, coding pat-
terns that lead to inefficient queries being generated by the ORMs,
and the lack of caching that results in redundant computation.

o For each performance inefficiency, we implemented an auto-
mated static analysis to systematically measure how prevalent it is
across different applications.

e For each inefficiency, we proposed solutions that open up
new research opportunities. We manually implemented a number
of these optimizations and showed that they provided up to 41x
performance improvement in our cases studies.

In the following, we review the design of ORMs and web applica-
tions built with ORMs in Section 2. Then in Section 3, we describe
our study methodology. We discuss our findings and optimizations
in Section 4 and Section 5, followed by related work in Section 6.
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Figure 1: Rails application example abridged from publify [13]

user

@ ®
HTTP request HTTP response

One Other
application 5 Controller applications
o)
bi
g @
: View objects
H Model Application
R Server
objects
query translator

@

SQL queries | | query results

Figure 2: Architecture of a Rails application

— : Data flow
: Control flow

2 BACKGROUND

In this section we provide an overview of applications constructed
using ORM frameworks, using Ruby on Rails (“Rails”) as an example.
Rails is an ORM framework that is widely used in building web
applications, including many well-known websites (e.g., Airbnb,
Hulu, etc.). Applications constructed on top of Rails share similar
architecture as those built using other ORMs such as Hibernate [10]
and Django [5].

2.1 Design of Rails applications

Figure 2 shows the architecture of a typical Rails application. The
application is hosted on a Rails application server that commu-
nicates with a DBMS to retrieve and manipulate persistent data.
Internally, a Rails application consists of three components: model,
view, and controller [30]. Upon receiving a user’s request, say to
render a web page (1) in Figure 2), the Rails server invokes the cor-
responding action that resides in the appropriate controller based on
the routing rules provided by the application, as shown in Figure 1.
During its execution, the controller interacts with the DBMS by in-
voking ORM functions provided by Rails (2), which Rails translates
into SQL queries (3). The query results (4) are serialized into model
objects returned to the controller (5), and subsequently passed to
the view (6) to construct a webpage (7) to be returned (8).

As an illustration, Figure 1 shows the code of a blogging applica-
tion. While the controller and the model are written in Ruby, the
view code is written in a mix of ruby and mark-up languages such
as HTML. There are two actions defined in the controller: index
and show. Inside the index action, the Rails functions User.where
and User . some_blogs are translated to SQL queries at run time to
retrieve blog records from the DBMS. The retrieved records are

then passed to render to construct a webpage defined by the view
file blog_index.erb. This webpage displays the excerpt and the URL
link (1ink_to) of every blog. Clicking the link brings the user to
a separate page, with another action (show) called with the corre-
sponding blog identifier to retrieve the corresponding blog details
via another query issued by Blog.where.

2.2 Object relational mapping in Rails

Like other ORMs, Rails by default maps each model class hierarchy
to a table. Each field in the model class maps to a column in the table.
Hence, for the code shown in Figure 1, User objects are stored in the
User table in the DBMS, and likewise for Blog objects. Developers
define relationships among the model classes, such as belongs_to
and has_many [7]. Such relationships are implemented using foreign
keys or by building a separate table storing the relationship. For
example, in Figure 1, each Blog object belongs_to one User, hence
Rails stores the unique user_id associated with each Blog. As we
will see, how classes and their relationships are modeled can affect
application performance significantly.

3 ANALYSIS METHODOLOGY

We now describe how we analyze applications, our profiling method-
ology, and the application corpus we choose for the study.

3.1 Static program analysis
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Figure 3: Action Flow Graph (AFG) example
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We build an ORM-aware static analyzer for Rails applications. It
produces an Action Flow Graph (AFG) that contains the data-flow
and control-flow information for each action, along with ORM-
specific information inside and across different actions. For instance,
the graph labels query function nodes that we identify based on
Rails semantics, such as the where function shown in Figure 3. To



support inter-procedural analysis, we start building AFGs from
the top-level function that runs an action and iteratively inline all
function calls.! In addition to regular function calls, we also inline
filters and validations [7], which are functions that are automatically
executed before an action and before any function that modifies
database, respectively.

The AFG contains next action edges between pairs of actions
(c1, ¢2) if ¢ can be invoked from ¢y as a result of a user interaction.
To identify such interactions, we identify actions that render URLs
(e.g., link_to in Figure 1) or forms in their output webpages, and
determine the subsequent actions that may be triggered as a result of
an user interaction (e.g., clicking an URL or submitting a form) based
on the application routing rules, such as those listed in Figure 1.

3.2 Profiling applications

In addition to static analysis, we profile a number of real-world
Rails applications using synthetic data to evaluate the potential of
our proposed optimizations.

As we do not have the exact real-world workload for the appli-
cations, we make our best effort in collecting real-world workload
statistics and build our synthetic workload accordingly. Particularly,
we collect workload statistics such as the total number of posts
(projects) in a forum (project-management) website, the average
number of posts (projects) by each user, the distribution of these
numbers, and others. The sources of our statistics include (1) web-
sites running these applications (e.g., lobsters [12] has a running
website, similarly for redmine [14]), (2) websites running an ap-
plication similar to the one in our corpus (e.g., we use statistics
collected from diaspora [3] for sugar [16]. Both are forum appli-
cations and share similar functionalities); (3) users’ reports about
their deployment experience of an application [9].

After populating the database, we visit each page generated by
the application and record the response time taken to generate each
response page, breaking it down into the time spent on the Rails
server running ruby code and the time spent on DBMS executing
queries.

3.3 Application corpus

We conduct a comprehensive study of 27 open-source Rails ap-
plications, selected from github based on their popularity (80% of
them have more than 200 stars), the number of contributors (88%
of them have more than 10 contributors), the number of commits,
and the application category. Details about them are shown in Ta-
ble 1. They cover a broad range of characteristics in terms of DBMS
usage: transaction-heavy (e.g., e-commerce), read-intensive (e.g.,
social networking), or write-intensive (e.g., blogging, forum); and
in terms of application complexity: small applications with simple
functionality (e.g., kandan [11], a small chatting-room application
that only supports chatting and file sharing), or large applications
with many features (e.g., gitlab [8], a website to manage and share
git repositories). We believe that these represent all major categories
of ORM-based applications. For findings presented in following sec-
tions, we take the average of all actions for each application (shown
in figures), and then average across all applications (statistics in
observation boxes), unless specified separately.

!We assume all recursive calls terminate with call depth 1.

We profile seven representative applications with the most stars
from the five categories mentioned above and use them in our case
study to evaluate the potential of each optimization we propose. For
each of these applications, we deploy the Rails server and MySQL
or PostgresSQL database on one AWS node with 4 CPUs, each with
16GB of memory, and run client on local PC browser for profiling.

4 SINGLE ACTION OPTIMIZATIONS

In this section, we present our findings on performance issues
within one single action. The causes of these issues are mainly poor
translation from ORM API to database queries, and rendering too
much data from query results.

4.1 Query translation

Many ORM frameworks allow users to construct queries by chain-
ing multiple function calls (e.g., where, join), with each chain trans-
lated into a SQL query. We find that current query translation
scheme often generates inefficient queries. However, they can be
optimized by understanding the query generation process and how
the results are subsequently used. In the following we introduce
common types of inefficient queries, propose ways to identify and
optimize them, and manually implement a subset of the optimiza-
tions to demonstrate potential performance gain.

4.1.1  Caching common subexpressions. By studying the query
log, we find that many queries share common subexpressions that
cause repetitive computation. An example is shown in Listing 1.
First, subPj is created on Line 1 from projects by issuing a query (Q1
in Figure 4) to retrieve the first level nested projects of the given
projects. Then, Line 2 creates descPj also from projects, issuing
another query (Q2 in Figure 4) to get all descendants of the given
projects. These two queries share the same selection predicate and
the results are both ordered by project id, i.e., they share the same
common subexpression.

subPj = projects.children.visible.order(*id ASC")
descPj = projects.where(*1ft > ? AND rgt < ?")
.visible.order(*id ASC")

Listing 1: Example queries that partially share predicate,
abridged from redmine [14].

Original queries Query time
Ql: SELECT projects.* FROM projects WHERE projects.parent_id=? AND
* (projects.status <> 9) ORDER BY projects.id ASC 0.70 sec

Q2: SELECT projects.* FROM projects WHERE (projects.Ift > ? AND
* projects.rgt < ? ) AND (projects.status <> 9) ORDER BY projects.id ASC

2.91 sec

Simulating intermediate-query-result cache
Q3: CREATE VIEW pj AS SELECT * FROM projects WHERE (projects.status
<> 9) ORDER BY projects.id ASC

Q4: SELECT * FROM pj WHERE pj.parent_id = ? 0.69 sec

0.04 sec

Q5: SELECT * FROM pj WHERE (pjIft > 2 AND pj.rgt <?) 0.47 sec

Figure 4: Performance gain by caching of query results.

To systematically measure the number of common subexpres-
sions, we generate the AFG of each action and compare the query
call chains using static analysis: if the same query function is used
in two different query function chains, the corresponding queries
will share a common subexpression. Using this analysis, we count
the number of queries that share subexpressions with a previous
query issued within the same action. The result is shown in Figure 5.



App Loc ‘ App Loc ‘ App Loc ‘ App Loc ‘ App Loc ‘ App Loc
forum ‘ social networking ‘ collaboration ‘ task management ‘ resource sharing ‘ e-Commerce
forem 5957 kandan 1694 redmine 27589 kanban 2027 | boxroom 2614 | piggybak 2325
lobsters 7127 onebody 32467 rucksack 8388 fulcrum 4663 brevidy = 13672 shoppe 5904
linuxfr 11231 | commEng 34486 | railscollab 12743 tracks 23129 wallgig 11189 amahi 8412
sugar 11738 diaspora 47474 | jobsworth 15419 | calagator 1328 enki 5275 | sharetribe 67169
gitlab 145351 publify 16269

Table 1: Application categories and lines of source code (all applications are hosted on github). All applications listed are
studied with static analysis. Among them, gitlab, kandan, lobsters, publify, redmine, sugar, tracks are profiled as well.
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Figure 5: Queries that share common subexpressions. The
upper figure shows the number of queries issued in loops,
and the lower shows queries not issued in loops. We sepa-
rately show these two types since queries in loop are repeti-
tively issued and thus have greater impact on performance.

Observation: 17% queries share subexpressions with other
queries with most of them performance critical.

Implication: Query execution time can be reduced by caching
the intermediate result of previous queries with shared subex-
pressions.

To simulate the effect of caching the intermediate results in List-
ing 1, we create a view (Q3 in Figure 4) to store the results of the
common subexpression (i.e., the ordered projects with certain sta-
tus) and change the queries to use the view instead (04 and Q5). By
using the cached results, the total query execution time of Q1 and
Q2 is significantly reduced from 3.6 to 1.2 seconds (67%).

There has been prior work on identifying shared subexpressions
in the context of multi-query optimization by batching and analyz-
ing queries online [25-27]. This imposes a performance penalty on
all queries. Instead, using static analysis offline incurs no runtime
overhead and is still able to find many queries that potentially share
subexpressions. Static analysis alone may result in false positives:
if a query shares subexpressions with queries in different branches,
such analysis may propose a strategy to cache all subexpressions
but at runtime only one branch is taken and one subexpression will
be useful. While this brings extra caching overhead, our manual
check on all applications finds that very few such cases arise.

4.1.2  Fusing queries. Checking the query logs reveals that the
results of queries are often only used to issue subsequent queries.
Listing 2 shows an example of such queries. Q1 in the original im-
plementation returns all members from group 1, with the results (m)
only used to issue a subsequent query Q2 to retrieve the correspond-
ing issues. Each query incurs a network round trip between the

DBMS and application server and application server will serialize
query results into objects after the results returned. Combining such
queries can reduce the amount of data to be transferred, reducing
the time spent on network and serializing data.

Q1: m = SELECT * FROM members WHERE group_id = 1;
Q2: SELECT x FROM issues
WHERE creator_id IN (m.id) AND is_public = 1;

Listing 2: Original queries (abridge from redmine [14])
listing issues by members from group 1.

We use static analysis on the AFG to identify queries whose
results are only used to issue subsequent queries, with the goal
to fuse them such that their results do not need to return to the
application. To understand how query results are used, we trace the
dataflow from each query node in the AFG until we reach either a
query function node, or a node having no outgoing dataflow edge.
Such read query sinks can be classified as: (1) query parameters
used in subsequent queries; (2) results rendered in the view; (3)
values used in branch conditions; or (4) values assigned to global
variables. After analyzing the sinks, we count the number of queries
that only have sinks belonging to (1), i.e., they are queries that can
be fused. The result is shown in Figure 6.
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Figure 6: Queries in loop (top) and not in loop (bottom)
whose results are only used in issuing further queries.

Observation: 33% of queries return results that are only used to
issue subsequent queries.

Implication: Merging such queries into subsequent queries as
subqueries or join queries can avoid unnecessary result transfer.
Static analysis can be used to identify and rewrite such queries.

Fusing queries can lead to significant performance gain. In the
previous example, Q1 and Q2 can be combined into a single query
as shown in Listing 3. This reduces execution time from 1.46 and
1.3 seconds for executing Q1 and Q2 respectively to 1.02 seconds for
executing the fused query (reduction of 62.3%). Moreover, fusing
Q1 and Q2 avoids returning the result of Q1 (20K records, 340KB in



size in our experiments) to the application server, which brings
further performance gain due to less data transfer over network
and reduced serialization effort.

SELECT * FROM issues INNER JOIN members ON
members.group_id = 1 AND issues.is_public = 1
issues.creator_id = members.id
Listing 3: Combining Q1 and Q2 in Listing 2

However, such optimization can also lead to a few issues. First, if
a query’s result is used as a parameter to more than one subsequent
queries, then query fusion will lead to repeated query execution.
Fortunately, using common subexpression optimization discussed
in Section 4.1.1 can avoid repeated work. Secondly, the performance
of combined queries is dependent on the query optimizer, so com-
bined query may not be always faster than the original separated
queries.

4.1.3  Eliminating redundant data retrieval. We find that many
queries issued by the applications retrieve fields that are not used
in subsequent computation. By default, query functions provided
by ORMs fetch entire rows (i.e., SELECT *) from the database, un-
less programmers use explicit functions to project specific columns
from the table (e.g., using select in Rails). Unfortunately, such
project functions are rarely used as programmers who write model
functions to retrieve objects are usually unaware of how their func-
tions will be subsequently used (possibly due to structuring the
application using Model-View-Control [30]). As such, automatically
identifying and avoiding unnecessary data retrieval can reduce both
query execution time and amount of data transferred.

To do so, we use the AFG to identify the fields retrieved by each
query along with their subsequent uses. Next, we calculate the
amount of unused data. For each fixed-size field like integers, we
use the data size stored in the database; for unbounded size field
(e.g., varchar) we use 2000 bytes.? The average sizes of used and
unused fields are shown in Figure 7.
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Figure 7: Amount of unnecessary data retrieved but not sub-
sequently used in the application.

Observation: More than 63% of all retrieved data is not used in
the application after retrieval.

Implication: Data transferred can be significantly reduced by
not retrieving unused data. This can be achieved using static
program analysis to identify the unused data and rewrite queries.

After identifying such fields, queries can be rewritten such that
only used columns are retrieved using projection as mentioned

2[4] and [2] conclude that the most popular length of a comment is around
200 words and in average each word is 10 bytes.

above. Prior work has studied the unnecessary column retrieval
problem [19] but did not propose an effective way to automatically
identify them. In particular, it only evaluates the performance im-
pact by analyzing the program and the query log obtained from
dynamic profiling. Our method shows that using only static analy-
sis on AFGs can effectively detect both retrieved and used columns,
and rewrite queries automatically to avoid redundant data retrieval.

. original . subexpr opt.
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Figure 8: Performance gain after applying all optimizations
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Figure 9: Transfer size reduction

4.1.4 Combining optimizations. We choose four most query
intensive actions in the redmine [14] application to evaluate the
optimizations mentioned above. For each action, we evaluate both
the query time and the size of data transfered from DBMS. Figure 8
and Figure 9 show the results. Despite the overhead described in
Section 4.1.1 and 4.1.2, each optimization still improves the overall
performance. Adding up all optimizations significantly reduces
the query time, up to 91%. For transfer size, the most reduction
comes from fusing queries and eliminating redundant data retrieval.
Transferred data in three actions is reduced by more than 60%.
These results show the significance of the inefficiencies that we
have identified and the potential performance gain that can be be
obtained.

4.2 Rendering query results

After examining the queries that are issued by the applications, in
this section we analyze how the application server processes the
query results and renders them.

We observe that loops are usually the cause of performance
inefficiencies in the processing of query results. By analyzing loops
in the AFG, we find that 99% of them iterate over arrays or maps;
49% process results from queries issued in the current action, while



the remaining 51% iterate over user inputs or query results from
previous actions. For example, when a user labels all messages
as read on a webpage and clicks the “submit” button, the list of
messages (which are query results from a previous action) are sent
to the current action to be processed iteratively.
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Figure 10: Queries in loop (top) and not in loop (bottom) re-
turning bounded/unbounded # of records

This observation suggests that if a query returns a large number
of tuples, then the controller or page renderer will likely be slow due
to individual (rather than batched) tuple processing. Such queries
also bring scalability issues: as the database size increases, the time
spent on processing or rendering the query result may increase
linearly or even superlinearly, making the application unable to
scale well with its data. To quantify this, we analyze the result size
of each query. Specifically, we check whether each query returns
an increasing number of tuples with increasing database size.

To do so, we first need to estimate the size of the query results.
In Rails, a query can return a larger amount of results when the
database contains more tuples (we call it an “unbounded result”)
in all but the following cases: (1) the query always returns a single
value (e.g., a COUNT query); (2) the query always returns a single
record (e.g., retrieving using a unique identifier); (3) the query uses a
LIMIT keyword bounding the number of returned records. Our static
analyzer examines all queries in each application and determine
whether a query returns bounded or unbounded result based on
the query type discussed above. We then count the average number
of both queries, with the result shown in Figure 10.

Observation: 36% of queries return unbounded numbers of
records.

Implication: Such queries are likely to be the scaling bottleneck
and can be identified by static analysis.

Turning queries from returning unbounded to bounded results
often requires changing the application logic. Pagination and in-
cremental loading are common techniques to bound the amount of
data shown on a webpage. For instance, developers can change an
application to to display messages over a number of pages rather
than a single one. This allows the messages to be incrementally
loaded as the user scrolls down the page. We manually apply pagi-
nation to three pages from three different applications, where these
pages are the most rendering-time consuming pages in their respec-
tive application. We evaluate the rendering time before and after
pagination, with the results shown in Figure 11.

Our evaluation shows that pagination provides impressive per-
formance gains, reducing rendering time by 85%. As such, build-
ing tools that can identify such queries and suggest possible code
changes will be an interesting area for future research.

. original rendering time paginated page rendering time
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Figure 11: Pagination evaluation. The data size is chosen ac-

cording to Section 3.3. The original page renders 1K to 5K
records, as opposed to 40 records per page after pagination.

5 MULTI-ACTION OPTIMIZATIONS

This section presents our findings on performance issues and po-
tential optimizations beyond individual actions.

5.1 Caching

By default, Rails does not maintain state after an action returns
(i.e., the resulting webpage has been generated). Although Rails
provide APIs for sharing states across actions (e.g., caching APIs that
store fragmented pages or query results), using them complicates
program logic and introduces user-defined caches that need to be
maintained. Unfortunately, not caching query results often leads to
redundant computation being performed across multiple actions.

We analyze our chosen applications and find two query patterns
that can benefit from cross-action caching. Below we first introduce
these two patterns, and then discuss how AFGs can be used to auto-
matically identify and quantitatively measure how common these
patterns are. Finally, we manually implement caches to evaluate
the potential performance benefits of cross-action caching.

Syntactically equivalent queries across actions: We find
that common practices in Rails applications can cause many syn-
tactically equivalent queries to be issued across actions. First, Rails
support filters. A filter f of a class C is executed every time a mem-
ber function of C is invoked. Consequently, the same queries in f
are issued by many different actions as they invoke functions of
C. Checking user permissions represents one such type of filters
that is shared across many actions. Second, many pages share the
same partial layout. Consequently, the same queries are repeatedly
issued to generate the same page layout in different actions. For
example, a forum application shows the count of posts written by
a user on almost every page after the user logs in.

This pattern reveals an optimization opportunity — we can iden-
tify queries that will probably get issued again by later actions,
and cache their results to speed up later actions, assuming that the
database contents have not been altered.

Queries with the same template across actions: We observe
that many queries with the same template, i.e., queries with equiv-
alent structures but with different parameters, are issued across
actions. One major reason for this is pagination, a widely used
programming practice to reduce rendering time as discussed in Sec-
tion 4.2. As a user visits these pages, the same actions with different
parameters, such as page ID, are repeatedly invoked, thus issuing
queries with the same template (e.g., the ones shown in Listing 4).

This pattern reveals an opportunity similar to common subex-
pression optimization. For example, if the sorted posts computed
when processing Q1 are cached (i.e., the query that corresponds to



Post.order(’created’)), then Q2 can simply return the next batch
of posts from the ordered list.

Q1: SELECT * FROM posts ORDER BY created LIMIT 40
OFFSET @

Q2: SELECT * FROM posts ORDER BY created LIMIT 40
OFFSET 40

Listing 4: Q1 and Q2 are issued when visiting pagel and
page2, sharing the same query template

We apply static analysis on the AFG to quantitatively under-
stand how common the above two patterns are across different
applications. Specifically, we analyze every previous-current action
pair that is linked by the next action edge in the AFG described
in Section 3. For each query Q in the current action, we check if
there exists a query Q” from the corresponding previous action that
is generated by the same code (e.g., the same filter or the same
function) as Q. If such a Q’ exists, Q and Q” share the same query
template. We further examine their parameters to see whether they
are syntactically-equivalent queries — if Q only takes constant value
or the same data from the session cache as parameters, we con-
sider it to be syntax-equivalent to Q” (i.e., same template and same
parameter)((1)); if Q takes user input and/or utility function result
as parameter, we consider it to be template-equivalent to Q” with
potentially different parameters((2)).

We calculate the average number of the two types of queries
(©) and (2)) issued in an action. The static analysis result is shown
in Figure 12. If a query has a syntax or template-equivalent peer in
any previous action, query processing can use the cached result.3

Observation: 20% and 31% of the queries are syntactically or
template equivalent to a query in a previous action respectively.
Implication: A cross action query cache can be used to accelerate
query execution. Program analysis can be used to accurately
identify such queries and determine which result to be cached.

We evaluate the benefit of caching using sugar [16], a discussion
forum application. Since it is difficult to predict a user’s complete
page-access sequence, our evaluation focuses on a common visit
pattern on paginated webpages: after visiting the first page, users
often visit the following pages to see subsequent results. We choose
four slowest paginated webpages that show 1) latest discussions;
2) popular discussions; 3) latest posts; and 4) recent invitations.
We populate the database following the data distribution of online
forum website as mentioned in Section 3.3, with 6GB data in total.
Each page takes 0.2 to 24.3 seconds to generate, with more than 95%
of time spent on database queries. We measure the total query time
for each page since our caching optimizations only affect queries.

We then use the AFG to automatically identify which query
result to cache, manually cache the results, and measure how much
query time is saved. The results are shown in Figure 13. Although
the query time in the first page becomes slightly longer (at most
5%) due to caching temporary results, queries in following pages
are significantly faster, by more than 5X in all actions (up to 245x).
The results illustrate an impressive benefit of caching to improve
application performance.

3We imagine such cache can be invalidated similar to standard application caches [17].
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Figure 12: Cacheable and prefetchable queries in loop(top)
and not in loop(bottom)
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Figure 13: Caching evaluation on paginated webpages. p1
and p2 refer to the current the next pages, respectively. (we
observed no significant latency difference among the pages
that are reachable from p1). The x-axis shows the query time
percentage with original first page’s query time as basline.

5.2 Storing data on the disk

In this section, we examine optimizations beyond action flow graphs.
More specifically, we present our findings related to how persistent
data is organized (i.e., the physical design) on the DBMS.

Our analysis finds that the poor default physical design produced
by ORM frameworks is one of the major causes for performance
inefficiencies. We observe that many queries are programmatically
generated with a few parameters provided by users during runtime,
and many queries only use a subset of the object fields that are
persistently stored. Such queries can be partially evaluated with
the results stored using customized physical layout, and query
evaluation can work on much less data using customized layout.
In the following we discuss different cases where such situation
arises. Then we evaluate the prevalence of each case and suggest
potential optimization opportunities.

5.2.1 Partial evaluation of selections. Many selection predicates
of programmatically generated queries use constant values as pa-
rameters. For instance, a page retrieving all commit actions issues a
query with the predicate name="COMMIT’ on the actions table, where



COMMIT’ is a constant; a page showing all unexpired stories issues
a query with expired=0 on the stories table as shown in Listing 5,
where again 0 is a constant. In these cases, we can partially evaluate
the query with known parameters, and store the results such that
only the remaining (user input dependent) portion of the query is
evaluated at runtime.

SELECT s.id, s.votes FROM stories AS s

WHERE s.expired=@ AND s.votes>@ AND s.created>?
INNER JOIN tags AS t ON t.sid=s.id AND t.tagid=?
ORDER BY s.created DESC

Listing 5: Query abridged from lobsters [12] that retrieves
ID and votes of unexpired recent stories with positive votes
and a certain tag.

SELECT s.id, s.votes FROM stories AS s

WHERE s.created>?

INNER JOIN tags AS t ON t.sid=s.id AND t.tagid=?
ORDER BY s.created DESC

Listing 6: Query retrieving stories on row partitioned table,
with the predicates s.expired=0 and s.votes>0 being partially
evaluated.

We statically analyze every predicate to see how common such
constant-parameter predicates are. For every selection predicate,
we locate the data sources of all its parameters following the data
dependency edges in the AFG. We consider a predicate to be “con-
stant” if the data sources of its parameters are constant values (i.e.,
not user inputs, query results, utility function return values, or any
other non-constant sources). We check every query to see whether
it contains any constant predicate; the number of such queries is
shown in Figure 14.
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Figure 14: Average # of queries in loops (top) and not in loops
(bottom) with constant predicates.

Observation: 33% of the queries includes predicate with constant
value as parameter.

Implication: These queries can be partially evaluated to reduce
query execution time.

one query, into 2N partitions. In practice, N is usually small: our
static analysis shows that on average each table is split into 3.2
partitions using the partition scheme mentioned above.

Listing 5 shows a query with constant predicates from the lob-
sters application. Based on these predicates the stories table can be
partitioned into two — the first partition stores unexpired stories
with positive votes (i.e., s.expired=0 AND s.votes>0), and the sec-
ond stores all other stories. The rewritten query is shown in Listing 6
that runs only on the first partition. We measure the performance
of the transformed query and find that its execution time is reduced
from 2.12 to 1.67 seconds (a 21% improvement). The evaluation uses
500K story tuples, a setting chosen based on real-world application
statistics as described in Section 3.3.

5.2.2  Partial evaluation of projections. Many queries only use a
subset of all stored fields in a table. For example, a query counting
the number of recent posts written by a user only uses the user_id
and created fields of the posts table. However, since ORM frame-
works map each class to a database table by default, while all fields
are stored in a single table regardless of their usage patterns. Instead
of only reading user_id and created, the post-counting query reads
the whole tuple, retrieving much more data than needed.

Furthermore, we find many cases where larger fields (in terms
of size) of a table are used by a lot fewer queries than smaller
fields. For instance, many webpages display a list of short tuple
summaries, where each summary contains small fields. In constrast,
many large fields are only displayed on pages that show all stored
fields. For example, a page showing a list of posts only shows the
title, author, and creation time of each post, all of which are small
in size; meanwhile, the entire text body is only shown on a page
that renders everything pertaining to a particular post.

The above observation leads to an optimization opportunity: if
we co-locate fields that are frequently used together in queries,
we can speed them up by reducing the amount of data retrieved,
especially when such fields are small in size. To understand the
benefits of this optimization, we use static analysis on the AFG to
quantitatively measure: 1) how often queries use only a subset of
object fields rather than SELECT = (in this experiment we assume
that the queries only retrieve the necessary fields as described in
Section 4.1.3); and 2) how large are the fields used in these queries,
compared to the unused fields. Figure 15 shows the result for 1),
and we only summarize the result for 2) due to space limit.

Observation: 61% of the queries use only a subset of fields. 45%
of all fields (in number) are used in these queries, and these fields
account for only 26% in terms of data size.

Implication: Many queries can be sped up by partially evaluating
projections (i.e., co-locating the used fields as described above).

Given a constant predicate p of query Q on table T, one way
to partially evaluate Q is to partition T row-wise into two tables:
one holding tuples satisfying p and another holding tuples not
satisfying p. This can be automated by first using static program
analysis to identify every such constant predicate p, then change
the physical layout of the corresponding table T, and rewrite the
query Q to execute on the partitioned table. If there are N queries
with different constant predicates on one table, the table can be
partitioned recursively, each time using constant predicates from

One way to achieve data co-location is to vertically partition a
table into two: one contains the fields used in all non-“select *”
queries, and the other contains all other fields. Doing so can speed
up many queries. For instance, in the lobsters application, after
statically analyzing the field usage pattern, we manually partition
the stories table vertically into two part, with the first partition
containing only 9 out of the 19 total columns. Particularly, this
partition does not include some large fields holding user-input text
like title and description, and consists of only 9.5% of the data




originally stored in stories table. After partitioning, we rewrite the
query as shown in Listing 5, which reads and processes full story
tuples, to the one shown in Listing 7, which only retrieves the fields
stored in the partitioned table. Doing so reduces query execution
time by 22.6%, from 2.12 to 1.64 seconds.

SELECT s1.id, s1.votes, sl.uid FROM sI1

WHERE expired=@ AND votes>@ AND created>?

INNER JOIN tags AS t ON t.sid=s1.id AND t.tagid=?
ORDER BY s1.created DESC

Listing 7: Query retrieving stories from the vertically
partitioned table and returning the same results as Listing 5.
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Figure 15: Number of queries in loops (top) and not in loops
(bottom) that use only a subset of object fields.

While using only a subset of fields can reduce query execution
time, vertical partitioning introduces overhead to queries that use
all fields in an object by adding an extra join based on the object’s
key. It also increases write query overhead since each record is split
and written into multiple tables after optimization. However, our
profiling finds that the join overhead is trivial if the key on the
partitioned tables is indexed, and the write overhead is small since
each write query usually affects a very small number of tuples.

5.2.3 Table denormalization. In addition to selections, joins can
also be partially evaluated: when the join predicates are fixed, we
can store the pre-joined (i.e., denormalized) tables to reduce query
time. This can lead to significant performance gain in many appli-
cations, as join queries are often computationally expensive.

To better understand the benefits of table denormalization, we
use static analysis to count the number of join queries and the
average number of tables involved in these join queries. The result
is shown in Figure 16.

Observation: 55% of the queries are join queries, and on average
each join involves 2.8 tables.

Implication: Improving join query performance is important to
ORM applications. Table denormalization can reduce the execu-
tion time of join queries in many applications.

While pre-joining tables can accelerate join queries, it also has
downsides. First, pre-joining can duplicate a large amount of data.
Second, it slows down write queries, as well as read queries that do
not use all fields in the denormalized table, especially read queries
that only access one of the joined tables. Fortunately, combining ver-
tically partitioning and pre-joining can avoid duplicating too much
data or slowing down non-join read queries. Only the fields used
in the join query are denormalized to be stored in one table while
the other fields remain in the original table. Our evaluation result
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Figure 16: Average number of join queries in loop (top) and
not in loop (bottom).

(described later in Figure 17) shows that the combined optimization
achieves large performance improvement.

5.2.4 Combining optimizations. In this section we evaluate the
gain of optimizations introduced in previous sections. We choose
four actions that answer GET requests, and three actions that an-
swer POST requests. A GET request is generated when a user visits
a webpage, which mostly issues read-only queries. A POST request
is sent when a user submits a form, which issues both read queries
to retrieve relevant data (e.g., data for authentication) and write
queries to record the user data and action. We choose both the
GET and POST actions based on the query time: the chosen actions
are those spending most time on database queries among GET/-
POST actions correspondingly. We then apply each optimization
discussed earlier one at a time to all queries in these actions, and
evaluate the query time for each action.

. original . row

row + column row + column + denormalize

Action 1

Action 2

Action 3

Action 4

: ' q '
0% 25% 50% 75% 100%

Figure 17: Performance of the original and optimized
queries from GET actions

Action 1

Action 2

Action 3

0% 25% 50% 75% 100% 125%
Figure 18: Performance of the original and optimized
queries from POST actions

Figure 17 and Figure 18 show how query time changes under
different optimizations. For GET actions, each optimization reduces



the query time and combined optimization improves query perfor-
mance by up to 41x. For POST actions that include both read and
write queries, the gain varies across actions. Some optimizations
slow average performance due their overhead on write queries (as
explained previously in each optimization).

l

95% GET

50% GET

5% GET

v v v '
0% 25% 50% 75% 100%

Figure 19: Performance of original and accumulated opti-
mizations for a mixed of GET/POST.

Despite the overhead, in most cases overall query performance
is largely improved due to the great improvement in GET actions,
which are usually the application bottleneck. The write queries
usually change a small number of records and are much faster than
long-running read queries, so the overhead on writes appears to
be trivial. Figure 19 shows the average query time under differ-
ent mixes of GET/POST actions. When 5% of actions are POST,
the combined optimization reduces the query time by 92.2%. Even
when 95% of actions are POST, the combined optimization still re-
duces 73.4% of query time, showing a great benefit of our proposed
physical-design optimizations.

6 RELATED WORK

In addition to the prior work mentioned in Section 4.1, we now
discuss two additional categories of related work.

Empirical Studies. A previous study [18] investigated perfor-
mance anti-patterns for ORM applications. However, it only men-
tioned two anti-patterns from three Hibernate-based applications.
We believe such anti-patterns are addressed by previous work [21,
29]. We instead provide a thorough study of nine patterns of query-
related performance problems on a larger range of applications,
and discuss solutions that were not covered in prior work.

Program analysis for database optimization. Our optimiza-
tions share the same high-level idea with recently proposed tech-
niques. DBridge [24] includes a series of work on holistic opti-
mization. This series of work includes query batching and binding,
automatic transforming of regular object-oriented code into synthe-
sized queries, decorrelation of user functions and queries, etc. Other
holistic optimizations include but not limited to: StatusQuo [20, 22],
Sloth [21] and QBS [23] for query synthesis, QURO [31] for query
reordering in transactions, PipeGen [28] for automatic data pipe
generation, etc. Our work instead proposes a number of new obser-
vations and research opportunities that can leverage prior proposed
techniques.

7 CONCLUSION

In this paper, we studied the database-related inefficiencies in 27
real-world web applications that are built using the Rails ORM

framework. We built a static analyzer to examine how these appli-
cations interact with databases through the ORM. We also profiled
some applications using workloads that follow real-world data dis-
tributions. Our findings reveal many optimization opportunities
and research challenges for designing performance-efficient ORM
frameworks in the future.
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