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ABSTRACT
This paper describes HYPERLOOP, a system for optimizing database-
backed web applications (DBWAs). Current approaches in opti-
mizing DBWAs focus on partitioning the application among the
browser, application server, and the database, and rely on each
component to optimize their portion individually without developer
intervention. We argue that this approach misses the goal of DB-
WAs in optimizing for end-user experience, and fails to leverage
domain-specific knowledge that DBWA developers have. For in-
stance, a news website might prioritize loading of the news head-
lines, even at the expense of slowing down loading of other visual
elements on the page. HYPERLOOP illustrates the idea of view-
driven optimization by allowing developers to specify priorities for
each of the elements on the webpage, and uses such information to
drive optimization of the entire webpage. HYPERLOOP currently
focus on optimizing for render time of webpage components, and
our preliminary results show that this view-driven approach can
substantially improve DBWA performance by leveraging developer
provided application knowledge.

1. INTRODUCTION
From banking to social networking, we interact with database-

backed web applications (DBWAs) on a daily basis. Unlike trans-
actional or analytical applications, DBWAs are structured in a three-
tier manner: a presentation tier that is executed by the web browser
called the view, an application tier that resides on the application
server, along with a storage tier consisting of queries and persistent
data managed by the database. Such application executes when an
end user visits a website. The web server, upon receiving the re-
quest, runs the corresponding hosted application that interacts with
the storage tier to manipulate persistent data. The query results are
returned to the hosted application on the web server. The view tier
then assembles the results and renders them into a webpage to be
displayed on the browser.

In principle, this three-tier architecture eases web application de-
velopment: the DBWA components are partitioned and can be op-
timized by their respective hosts (i.e., the browser, web server, and
the database). In practice, however, optimizing such applications
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is extremely difficult. Unlike transactional applications that focus
on optimizing for throughput, DBWAs instead focus on end user
experience (e.g., interactive websites), which often translates to the
time taken to render the resulting webpage. Recent studies have
shown that every 0.5s of latency in website rendering reduces web-
site traffic by 20% [18], and that users will abandon a site if it takes
longer than 3s to load [9]. In such web applications, load time is not
only caused by the view tier, but also dependent on the amount of
time taken for the application and storage tiers to execute applica-
tion logic and queries. The three-tier architecture makes it difficult
for developers to optimize their DBWAs: while end users only in-
teract with the view tier, developers need to reason about how the
view is generated through a complex myriad of code that spans the
software stack.

To make things worse, webpages typically consist of multiple
view components (e.g., tables, buttons, text blocks, etc.), with each
component rendered using different code paths. In view design lit-
erature [5, 1], it is well-known that not all view components are
created equal: a user might perceive a news website to have loaded
already once the news headlines have appeared on the screen, even
though the rest of the page has not been fully loaded yet. This has
led to the development of asynchronous loading libraries allowing
developers to modify their DBWA code to load page elements at
different times, even at the expense of slowing down the rest of
the page. Such tradeoffs are prevalent in DBWA design: divid-
ing a long list of items into multiple, shorter lists and rendering
each of them across multiple pages (pagination), pre-loading data
that is likely to be used in subsequent pages that the user will visit
(caching), etc. Today developers make such tradeoffs manually by
trying to change the code across layers and see how that impacts
each page element, and repeating the process until the best design
is reached. However, we are unaware of any system that would sys-
tematically capture such “view-specific” knowledge from develop-
ers, and exploit them for optimization of DBWAs.

We argue that this page element-wise “trial-and-error” optimiza-
tion of DBWAs is wrong. Instead, we believe the optimization of
DBWAs should be view-driven by the domain-specific knowledge
that developers possess. In this paper, we describe HYPERLOOP,
a new system we are designing with that purpose. HYPERLOOP
concretizes view-driven optimization by allowing DBWA devel-
opers to provide domain-specific knowledge as priority labels for
each webpage element to indicate those that should be rendered
first.1 Given priorities and a resource budget (HYPERLOOP cur-
rently supports specifying total memory available to store data in
memory), we envision HYPERLOOP to automatically analyze the

1Other notions of domain-specific knowledge are certainly possible, e.g.,
impact on user experience, interactivity, etc. We currently use the time to
render as it is an easily quantifiable measure.



Figure 1: An example webpage from Tracks.

11: <% for p in @left_projects %>
12:    <a href=..%=p.id%..><%=p.name%></a>
13:    <% for t in p.todos %>:
14:        <li> t.name, t.context </li>
15:        <li> t.note </li>
16:        <span> t.tags.join{} </span>

Q1: SELECT * FROM users WHERE id = ?                               
Q2: SELECT * FROM projects WHERE user_id = ?                        
Q3: SELECT COUNT(*) FROM todos WHERE done=false AND project_id = ?  
…
Q4: SELECT * FROM todos WHERE project_id = ?                        
….
Q5: SELECT * FROM notes WHERE todos.note_id = note.id.              
…
Q6: SELECT COUNT(*) FROM todos WHERE project_id = ?                
…

16: <% for p in @right_projects>
17:    <li> <% p.name> </li>
18:    <span><% p.todos.count></span>

7:  @user = User.where(:id=?)
8:  @projects = @user.projects
9:  @left_projects = @projects.select

{|p| p.todos.where(done=>false).count>0}
10: @right_projects = @projects.select

{|p| p.status=‘active’}

1: class User:
2:    has_many: projects => Project
3: class Project:
4:    has_many: todos => Todo
5: class Todo:
6:    has_one: note => Note

L7
L8
L9
…

L13
…

L15
…

L18
…

Figure 2: Abridged code to render the webpage shown in Figure 1,
with blue numbers indicating which line of Ruby code at the top
generated the query.

DBWA code to devise a plan to render each of the pages in the
application, with the goal to reduce the render time of the high pri-
ority elements as much as possible. HYPERLOOP achieves this by
applying different optimization across all three tiers, from changing
the layout of each page to customizing data structures to store per-
sistent data in memory. To help developers assign priorities, HY-
PERLOOP comes with a static analyzer that estimates render times
and presents the results via HYPERLOOP’s user interface.

While we are still in the early implementation phase of HYPER-
LOOP, our initial experiments have shown promising results: we
can improve the start render time (i.e., time taken for the first el-
ement to be displayed on the browser’s screen after initiating the
HTTP request) of high priority webpage elements in real-world
DBWAs by 27�. We believe this illustrates the potential of view-
driven optimization of DBWAs, with HYPERLOOP presenting an
initial prototype that implements this concept.

2. HYPERLOOP OVERVIEW
We now discuss how DBWA developers can use HYPERLOOP to

improve their applications. Figure 2 shows a code fragment from
Tracks [3], a popular Ruby on Rails DBWA for task management.
Figure 1 shows a page from the Tracks listing of projects created by
a user, where each project contains a list of todo actions. This page
has three panels. The left panel shows a list of undone projects (we
call a project “undone” if it contains undone todos), with the detail
of each todo shown when clicked. The upper right panel shows a
form where user can add a new todo, and the bottom right panel
shows a list of active projects and its todo count.

Figure 1 shows the abridged DBWA code used to render this
page. Lines 1-6 show how persistent data is organized into the User,
Project and Todo classes. It also specifies the relationship between
the classes, for instance, a project has many todos, as implemented
as foreign key constraint in the database. Line 8 retrieves the list of
projects that belongs to the current user from the database and into
the Ruby array variable @projects. Line 9 then filters @projects to
return those to be rendered on the left panels based on the number
of undone todos. The filter for the right panel selects the active

projects in Line 10. The code uses the where API provided by the
Rails library which translates the object query to SQL queries as
shown in the bottom of Figure 2.

Lines 11-18 show the view file written in HTML with embed-
ded Ruby code. The bottom of Figure 2 shows the SQL queries
translated by the Rails library to generate this page. Q1 retrieves
the current user, followed by Q2 to retrieve her projects. A number
of queries (e.g., Q3) are issued to get the count of undone todo for
each project. Similarly, some queries are issued to get the todos for
each project (Q4) and note for each todo (Q5) which are on the left
panel, as well as todo count for each project (Q6) on the right.

HYPERLOOP allows developers to improve performance via its
view-centric interface. Figure 3 shows the HYPERLOOP workflow.
To use HYPERLOOP, the developer only needs to label the high
priority elements on the webpage, and HYPERLOOP will automati-
cally analyze the application code to suggest different ways to ren-
der the page by reducing the render time of high priority elements,
while possibly increasing the render time of the low priority ones.
We envision that HYPERLOOP will make different tradeoffs based
on how the elements are labeled, and propose different render plans
to the developer to further refine.

To help developers assign priorities, HYPERLOOP comes with
an analyzer that statically estimates the load time of each page ele-
ment, given the amount of data currently stored in the database. The
estimates are presented to the developer as a heatmap, as shown
in Figure 4. We envision other analyses will also be useful in aid-
ing the developer to assign priorities, for instance the amount of
memory used, query plans used to retrieve rendered data, etc.

For the example shown in Figure 1, suppose the developer de-
cides to label the list of undone projects as high priority, based
on the current load time estimate. Given this information, HY-
PERLOOP will suggest different ways to render the page and opti-
mizes the data processing leveraging priority. For instance, loading
the undone projects panel asynchronously (to be discussed in Sec-
tion 6), and furthermore storing them away in a dedicated list in
memory for fast retrieval (to be discussed in Section 7). If the de-
veloper instead labels the active projects as high priority, and the
undone projects as low priority, then HYPERLOOP will generate
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Figure 3: HYPERLOOP workflow

different rendering plans, for instance paginating the list of active
projects across multiple pages (if there are a lot of active projects)
while approximating the undone projects from previously cached
data. HYPERLOOP is designed to be interactive: if the developer
prefers not to paginate as it disrupts the user experience, she can
indicate her preference using the HYPERLOOP user interface (and
potentially reassigning the priorities), and HYPERLOOP will devise
another render plan for the page.

After the developer picks one of the rendering plans, HYPER-
LOOP will automatically apply changes to the application code. As
our current focus is on leveraging priorities for reducing load time,
in the next sections we discuss different code changes we have im-
plemented based on priorities, along with evaluations using real-
world DBWA benchmarks. Our current prototype is designed for
applications built using the Model-View-Controller (MVC) archi-
tecture [20] where the application is hosted on a single web server
with source code available to be modified by HYPERLOOP.

3. PRIORITY-DRIVEN OPTIMIZATION
HYPERLOOP applies various optimization to different webpage

elements depending on their priorities provided by the developer.
These optimization often provides speedup to certain web-page el-
ements (i.e., high-priority ones) at the cost of the loading time or
the rendering quality of other elements (i.e., low-priority ones), and
hence is not explored by traditional optimization techniques. We
present a few optimization of this type below. We will then discuss
how we implement these optimization in the next few sections.

Asynchronous loading. Asynchronously loading a view ele-
ment e allows web users to see e before other potentially slow
elements get loaded. The downside is that the total amount of
computation or the total number of queries issued to the database
may increase, because previously shared computation across asyn-
chronously loaded components can no longer be shared. This opti-
mization can be applied to high-priority elements, and will require
view changes (Section 5) and application-tier changes (Section 6).

Pre-computing. While generating one web-page p1, one can
pre-compute contents needed to generate the next page p2, which
the web user is likely to visit next through a link on p1. This will
speedup the loading time of p2 at the cost of the loading time of
p1. HYPERLOOP supports this optimization only when the devel-
oper provides high priority to the link on p1 that points to p2. It is
implemented through our app-tier optimizer (Section 6) .

Optimizing for heavy reads or writes. There are often both
read and write accesses to the same database table. Our database
layout generator (Section 7) can optimize for either heavy-write
workload, at the cost of read performance, or heavy-read workload,
at the cost of write performance, based on the priority information
provided by the developer.

Pagination. It often takes long time to retrieve and display a
long list of items. One way to improve performance is to only
show the first K items in the list and allow users to navigate to
subsequent pages to view the remaining items. This change can
greatly improve the loading time of the list, but at the cost of taking
users longer time to see later part of the list. It can be applied
to a list that contains both high and low priority items and items,
or an overall low priority list whose content-viewing experience
is less important than its loading speed. This is implemented in
HYPERLOOP’s view designer (Section 5) and app-tier optimizer
(Section 6).

Approximation. Approximation can be applied to many aggre-
gation queries, such as showing “you have more than 100 TODOs”
instead of “you have 321 TODOs.” Like pagination, approximation
presents a tradeoff between loading speed and the quality (accu-
racy) of the content, and is suitable for low priority elements. This
is implemented in HYPERLOOP’s view designer (Section 5) and
the app-tier optimizer (Section 6).

Using stale data. Caching data in memory and updating only pe-
riodically can improve performance at the cost of data quality and
freshness. Priorities provided by developers can help HYPERLOOP
determine which page element to cache. This is implemented in
HYPERLOOP’s app-tier optimizer (Section 6) and layout generator
(Section 7).

4. HYPERLOOP’S USER INTERFACE
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Figure 4: Heatmap showing the estimated loading cost of each
webpage element, along with priority assignment and render-
ing recommendations generated by HYPERLOOP.

HYPERLOOP provides a unique interface for developers to un-
derstand the performance of their application and provide priority
information. First, it presents the statically estimated cost (to be
discussed in Section 6) to render each HTML element as a heat map
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Figure 5: Heatmap after optimizing for undone projects on the
left panel shown in Figure 1.

in the browser. This cost includes the time to retrieve the data from
the database and process it in the application server. Figure 4(a)
shows an example heat map of the webpage shown in Figure 1,
where darker color means higher cost. For example, the left and
bottom right panels have a high cost because of the large number
of projects stored in the database, making the queries that involve
them (e.g., Q1 in Figure 2) slow.

As discussed in Section 2, after examining the estimates, the de-
veloper can click on an HTML element on the page to indicate
priority. We intend the interface to support applying the same pri-
ority to a group of elements after highlighting them. HYPERLOOP
supports different priority levels as shown in Figure 4.

After assigning priorities, the developer would click on the “an-
alyze” button on the right. HYPERLOOP then analyzes each ele-
ment together with its priority, and provides a list of suggestions as
shown in Figure 4. Some of these suggestions require further user
input, for instance, how many objects to show on each paginated
page. All of the suggestions are only related to webpage look and
functionality designs, and the developer needs no database knowl-
edge to choose a suggestion. We describe the list of suggested
changes in Section 5.

The developer can right-click each element to view the rendering
plan generated by HYPERLOOP. After choosing one of the plans,
HYPERLOOP will change the application, re-estimates the cost, and
renders the new webpage with a new heatmap, like the one shown
in Figure 5, where the left panel is now loaded first.

HYPERLOOP not only suggests the rendering plan but also opti-
mizes query processing based on priority assignment, as described
in Section 6.2 and Section 7.2. These optimization strategies often
involve tradeoffs, for instance, accelerating a query that retrieves
data for high-priority HTML tags by slowing down queries for low-
priority tags slightly. HYPERLOOP renders a list of such optimiza-
tions in the IDE and lets developers enable and disable them in-
dividually (by default HYPERLOOP applies all optimizations), as
shown in Figure 6. The developer can then ask HYPERLOOP to
regenerate the heatmap to see the effect of certain optimization(s).
Doing so allows the developer to do A/B testing and understand
how these optimizations interact with each other. Furthermore, HY-
PERLOOP can show the refactored code (after choosing rendering
recommendations and a set of optimizations) if the developer wants
to know the change in more detail, as shown in Figure 6.

HYPERLOOP supports assigning priority to both HTML tags as
well as a form or a hyperlink to another webpage. If a form is as-
signed high priority, HYPERLOOP will attempt to reduce the time
taken to process the form by changing the in-memory data layout

Optimization List

Splitting queries

Pre-loading data

Caching common subexpressions

Using stale data

Changing read-query weight

Changing write-query weight

Leveraging infrequent update 

7a8
> <%
@users = @users.paginate
(:page => params[:page],
:per_page => 25)
%>
13a15
> <%= will_paginate @users %>

1

2

3

4

Figure 6: Left: refactored code. Right: a list of optimizations
that developer can enable/disable individually.

of persistent data (to be discussed in Section 7). If the hyperlink is
assigned high priority, HYPERLOOP will optimize the render time
of the linked page, possibly by increasing the time taken to load the
current page. As mentioned in Section 2, the developer can visu-
alize such tradeoffs and reassign priorities using the HYPERLOOP
interface as needed.

We next discuss the design of HYPERLOOP as shown in Figure 3
and how different tradeoffs are made given priority information.

5. VIEW DESIGNER
The View designer analyzes and transforms view files that define

webpages’ look and functionality. Its purpose is to identify which
application tier object is rendered by which HTML element, and
passes this information to the Application-tier optimizer. It also
carries out priority-driven optimization as described below.

Asynchronous loading. To asynchronously load an HTML el-
ement e, the View designer splits the original HTML file into two
files, one rendering e and the other rendering the rest of the page.
To do so, the View designer first creates a new view file v to render
e, and then creates new code to reside on the application server to
compute the contents needed by e to render the view file v, and
finally replaces e in the original view file with an AJAX request.

Pagination. The View designer detects pagination opportuni-
ties by checking whether an HTML element is rendering a list of
Ruby objects in a loop. After the developer decides to paginate
an element, the View designer rewrites the view file to render a
constant number of elements first and adds a page navigation bar,
as described in prior work [26]. It passes the design decision to
the Application-tier optimizer who will change the query to return
limited results (by adding LIMIT and OFFSET). Pagination itself can
greatly accelerate the start render time. For example, paginating
the left panel of Figure 1 to show 20 projects per page (out of 2K
projects altogether) accelerates the panel rendering by 27�.

Approximation. The View designer detects approximation op-
portunities by checking if an HTML element is displaying a value
that is returned by an aggregation query. Once the developer ac-
cepts an approximation optimization opportunity, the View designer
changes the view file to add “at least” or “at most” before the ag-
gregation value and passes it to the Application-tier optimizer to
change the query to count only N values by adding a LIMIT clause.

6. APPLICATION-TIER OPTIMIZER
We now describe the static analysis framework in HYPERLOOP’s

Application-tier optimizer that enables a wide variety of optimiza-
tion, including basic optimization that can be applied without prior-
ity information. Then we give examples on how it supports priority-
driven optimization.



6.1 Analysis framework
The Application-tier optimizer statically analyzes the application

code to understand 1) how the application computes and generates
data that is to be rendered at each view component; 2) the flow of
actions across consecutive pages.

p.id, p.name

@proj=projects.where(:id=?)

@todo = todos.where(:id=?)

home.index project.show

todo.show

@todo = Todo.new(…)
@todo.note = Note.new(…)

todo.create

@left_projects=@proj…

N1

N2

N3

N4

N5

N6

user = User.where(:id=?)

@projects=user.projects

@right_projects=@proj…

for p in @left_projects

control flow data flow next action

Figure 7: An Action Flow Graph (AFG) example.

To enable such analysis, the Application-tier optimizer constructs
Action Flow Graph (AFG). An example is shown in Figure 7. An
AFG is a flow graph consists of a set of hypernodes and next-action
edges. Each hypernode represents a controller action, i.e., the com-
plete code path used to generate a webpage. The next-action edge
links pairs of actions (a1; a2) if a2 can be invoked from a1 as a
result of a user interaction, for instance, by clicking a webpage.
To identify such interactions, Application-tier optimizer identifies
the HTML elements that contain URLs or forms and determines
the subsequent actions that may be triggered as a result of an user
interaction, for instance clicking on an URL or submitting a form.

Inside each hypernode, the Application-tier optimizer builds an
action dependency graph (ADG). Every node n in the ADG repre-
sents a statement in the corresponding action. Every edge e repre-
sents either control dependency or data dependency. Nodes in the
ADG are tagged as query nodes if they issue queries, with their data
dependency edges labeled with database table and column names.

Using the ADG, the Application-tier optimizer can trace back
from nodes that render data (e.g., N7 in Figure 7) to all the queries
which the data-rendering node has control or data dependence upon
(e.g., N1 and N2). These queries are considered as contributing
queries.

This analysis enables the Application-tier optimizer to perform
many types of optimization as introduced in earlier work [23]. Some
optimization always improves performance, e.g., adding projection
to load only fields being used. Others, however, requires making
tradeoffs, which we discuss next.

6.2 Priority-driven optimization
We now discuss a few examples on how the Application-tier op-

timizer supports priority-driven optimization.
Example 1: Splitting queries. Very often DBWAs would issue

a query to retrieve one set of data that will be filtered/processed in
multiple ways to render multiple view components, as doing so can
reduce duplicate work in rendering related view components. For
example, a web page may show both a list of projects and a total
count of these projects. The application can issue a single query
to retrieve all projects while counting them in memory. Another
example is the query to retrieve all projects (Q1 in Figure 2) into a
Ruby array @projects that is filtered separately in memory to obtain
@left_projects and @right_projects.

Although the shared query helps to reduce the total number of
queries issued and the overall computation required to render the
page, it could be sub-optimal if the multiple view components sup-
ported by it have different priorities. Specifically, to carry out
an asynchronous loading optimization discussed in Section 3, the
Application-tier optimizer splits a shared query if the result is used
in asynchronously loaded elements. For example, if the left panel
has high priority and is decided to be asynchronously loaded from
other parts, the optimizer splits Q1 into Ql and Qr as shown below:

Listing 1: Example application code illustrating query splitting
Ql: @left_projects =

user.projects.where(undone.count>0).include(todos,
include(note))

Qr: @right_projects =
user.projects.where(status=‘active’).include(todos.count)

After the split, each query retrieves the data shown on the cor-
responding panel. Doing so causes the projects shown in the two
panels to be retrieved in separate queries, but allows separate opti-
mization of Ql, such as eager-loading of todos and notes for the left
panel query (where and include are query functions to filter data us-
ing predicate and to eager-load the associated objects). Besides, the
Application-tier optimizer will pass the design decision to the Lay-
out generator and the splitting will allow generator to customize a
layout for Ql (described in Section 7). As an illustration, with 4K
total projects and 50% of them to show on the left panel, splitting
the query and optimizing Ql as mentioned above reduces the query
time of Ql from 5.1s to 0.5s, and the overall start render time from
13.7s to 6.1s.

Example 2: Pre-loading data. By default, each page is com-
puted from scratch upon receiving an HTTP request. However, de-
velopers might know the next page(s) the user will likely visit and
wish to pre-load data to accelerate loading of the next page, even at
the expense of increasing the load time of the current page slightly.

An example is when a user visits the home page of a forum and
then visits different posts by clicking on the hyperlink. As the
home page shows only the title of each post, generating it once
and caching it on the client slide would be optimal, but subsequent
pages of individual posts might be impractical to cache as each
may contain large images and contents. Yet, the developer might
want the posts to load fast and is willing to trade off the perfor-
mance of the home page. In that case, she can indicate priorities on
the current page and HYPERLOOP will pre-load data accordingly.
We use the Sugar forum application [2] as an illustration, where
the database query retrieving the posts on its homepage selects not
only the title but also the contents of each post. With a forum of
500 posts on the home page, doing so shortens each of the post
page rendering time by 82% while increasing the home page load
time by 12%.

Example 3: Caching common subexpressions. Common subex-
pressions are often shared among queries across consecutive pages [23].
Subsequent pages can reuse the results of these common subexpres-
sions with a slight overhead for the current page due to caching.
The Application-tier optimizer applies such caching if the devel-
oper chooses to pre-load data for subsequent pages after labeling
with high priority. For example, for a page that shows the first 40
recent posts, the developer can assign the subsequent pages with
high priority, as users will likely explore beyond the most recent 40
posts. The queries for the first and second pages are shown in List-
ing 2. They share the same subexpression that sorts the projects. In
this case, the Application-tier optimizer will rewrite the queries to
sort the posts, store the sorted results in a list and cache them such



that the queries for all subsequent pages can simply return from this
sorted list, as shown in Listing 3. With 10K posts, doing so slightly
sacrifices the render time of the first page (an increase by 5%) but
speedup the other pages by 2.3�.

Listing 2: Two queries sharing a common sub-expression
P1 : @posts = post.order(:created).limit(40).offset(0)
P2 : @posts = post.order(:created).limit(40).offset(40)

Listing 3: Common sub-expression result is cached and reused
P1 : @posts_all = post.order(:created)

@posts = @posts_all.limit(40).offset(0)
P2 : @posts = @posts_all.limit(40).offset(40)

Example 4: Using stale data. It may be worthwhile to show
stale data in a low-priority HTML element for better performance.
The Application-tier optimizer implements this by changing the ap-
plication code to cache data rendered in labeled HTML elements,
and reuse it when the same element is rendered subsequently. For
example, a developer may think the right bottom panel in Figure 1
occupies only a small and unimportant part of a webpage and thus
labels it as low priority. The Application-tier optimizer will then
suggest to cache the list of active projects, the total count, and the
count of todos for each project. Doing so eliminates most of the
queries to the database when rendering the page. To evaluate this,
we use 2K active projects shown on the right panel of Figure 1, and
the total rendering time is reduced by 65% after data for the right
panel is cached.

7. LAYOUT GENERATOR
In this section we first introduce the basic optimization that the

Layout generator can do without user interaction. Then we give
examples on how it performs priority-driven optimization.

7.1 Basic optimizations
HYPERLOOP’s Layout generator generates customized data lay-

out for an application. It takes all the queries that can potentially be
issued by the application and finds the best in-memory data layout
to store the application data in order to improve the overall query
performance. It also generates query plans and estimates the cost
of each query.

The Layout generator’s data layout and query plan search space
are specifically designed for object-oriented database backed ap-
plications like DBWAs. The layout design space is inspired by the
object query interface. For instance, because queries often returns
objects and nested objects, it is expensive to frequently join multi-
ple tables and furthermore convert the tabular join results to nested
objects. So the layout space incorporates not only the traditional
tabular layout and indexes, but also deeply nested layouts.

The Layout generator first enumerates the possible data layout
to store the data for each individual query as well as query plans
that use particular layouts. Then it finds out the optimal layout for
the entire workload by formulating an integer linear programming
(ILP) problem. In this formulation, each data structure in every
possible layout is assigned a binary variable to indicate whether it
is included in the final layout; similarly for each query plan. It also
estimates the memory cost for each data structure and the time for
each query plan. For write queries, it generates one plan to update
one data structure. The optimization constraints state that the over-
all cost of all included data structures are within the memory bound
provided by the user, while the optimization goal is to minimize
the overall runtime of all queries. It uses state-of-the-art solvers to
solve the ILP problem and constructs the final layout accordingly.
Finally, it generates an implementation of both data layouts and
query plans.

7.2 Priority-driven optimization

(a): Layout if Q1, Q2 has equal priority (b): New layout if left panel has higher priority

(c): New layout if todo-form has higher priority

todo1 todo2 todo3 todo4

user1 user2

note1 note2 note3 note4

proj1 proj2 proj3 proj4
user1
proj1 proj3 proj4

todo5todo1 todo2
note1 note2 note5

user1 user2
proj1 proj2 proj3 proj4

todo1 todo2 todo5
note1 note2 note5

todo4

note4

user2

Figure 8: Priority-driven layout design.

We next discuss a few examples on how Layout generator sup-
ports priority-driven optimization. All examples below reduce the
load time for the selected elements labeled with high priority at the
expense of possibly slowing down other elements in the same page.

Example 1: Changing read-query weight. The Layout gen-
erator can design a data layout that better optimizes queries with
high priority. Since it formulates the search of data layout into
an optimization problem where the optimization goal is the sum
of runtime cost of all queries, it can simply assign higher weights
to those queries whose results are needed to render higher-priority
HTML elements, as identified by HYPERLOOP’s Application-tier
optimizer.

For example, consider Q1 and Q2 shown in Listing 1 before as-
signing priorities. The Layout generator may produce a layout as
shown in Figure 8(a). If the developer assigns higher priority to
the left panel, Q1 will receive a higher weight, which results in the
layout shown in Figure 8(b). In this layout, the projects belonging
to a user are stored as a nested list within user; the todos are stored
as nested objects in each project; and similarly for the notes. This
layout is highly optimized for Q1: retrieving the @left_projects

does not need to perform a join on project, todo, and note com-
pared to using layout (a). This layout also avoids the expensive de-
serialization from denormalized table to nested objects. With this
layout, the query time for the left panel is further reduced to 0.5s
(compared to 5.1s using the tabular layout).

Example 2: Changing write query weight. An HTML form
might be assigned high priority if it is frequently used, such as the
form shown in upper right of Figure 1 if new todos are frequently
added. The queries used for new todo submission are shown below:

@todo = Todos.new(name=param[’name’], ...)
@todo.note = Notes.new(content=param[’note_content’],...)
@todo.save

In this case, the Layout generator adds larger weight to the write
query creating new todo with embedded notes. It would then gen-
erate data layout in Figure 8(c). Compared to (b) where inserting
a new todo needs an extra query to locate the project that this todo
belongs to, (c) is better optimized for adding new todos because the
todos are stored as a top-level array and an insertion only appends
to the array without the extra read query.

Example 3: Leveraging infrequent update (stale data). If an
HTML element is assigned low priority, the query that retrieves
data for this element can potentially read from stale data. The Lay-
out generator can generate a more efficient data layout for this type
of read queries. For example, if the count of all active projects
(as shown in the right bottom panel of Figure 1) is assigned the
lowest priority, then the generator will assign a very low weight to
any plan that updates the data structure only used to compute this



count. The generated data layout will pre-compute the count and
store it in memory, which reduces the end-to-end webpage time
when the count is rendered. For instance, using stale data for the
active project and context count in the right bottom panel can accel-
erate rendering the panel by 26% (after the list is paginated). With-
out knowing the priority, it is unlikely to pre-compute the count
because any delete query triggers a re-computation of this count,
which greatly increases the total query cost.

8. RELATED WORK
Priority in Software Development. The concept of “priority”

has been widely used in software engineering. For example, in ag-
ile programming, one common practice is to list user stories (i.e.,
user-facing software features) and give them priority in the devel-
opment cycle [4, 6]. We use the same concept in making the view-
performance tradeoffs. However, rather than using priorities to as-
sist in ordering which software feature to implement first, HYPER-
LOOP instead leverages priorities to improve the page-viewing ex-
perience of end-users, with the assumption that high-priorities are
assigned to webpage elements that are intended to catch viewer’s
attention.

Database Optimizations. The database community has pro-
posed query optimizations similar to those described in the paper.
For example, identifying and caching shared subexpressions in the
context of multi-query optimization [16, 17], leveraging stale data
like using lower consistency level in the context of transaction pro-
cessing [21], automatic design of materialized views that different
query weight leads to different views in the context of physical de-
sign [7, 15]. etc. Although many optimizations are not new, when
to implement them and how to make the tradeoff in DBWAs require
developer’s knowledge and preference. We propose the design of
an easy-to-use interface to leverage developer’s preference via pri-
ority and automate the optimization implementation.

Optimizing Database-backed Applications. Much work has
been done on discovering of performance issues of database-backed
web applications, such as identifying performance problems in DB-
WAs, such as retrieving unneeded data [11], issuing long query
chains that are difficult to optimize [10], and other API misuses [25].
Prior approaches also include solving these issues [13, 12, 14, 8,
19, 22, 24], but focus on performing semantic-preserving low-level
code changes on the application automatically similar to an opti-
mizing compiler, and they all assumed the goal is to reduce the
latency in loading the entire page. HYPERLOOP is not designed to
be an optimizing compiler, but instead focuses on aiding the devel-
oper prioritize page elements to optimize directly from the view,
and suggests various kinds of code and view changes by leveraging
the priorities provided by the developer.

9. CONCLUSION
We presented HYPERLOOP, a new system that helps develop-

ers optimize DBWAs. Unlike prior approaches, HYPERLOOP rec-
ognizes that developers often make tradeoffs when designing DB-
WAs, and leverages developers’ knowledge to optimize DBWAs
in a view-driven manner. Given priority information provided by
the developer, HYPERLOOP automatically analyzes the application
and suggests various design and code changes to improve the ren-
der time of different elements on the page. While still under imple-
mentation, preliminary results have shown that our view-driven ap-
proach is effective in improving end user experience of real-world
DBWAs.
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